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SUMMARY

B Al models, such as digital twins and surrogate models,
offer significant potential to speed up and improve the
design and optimisation of fusion reactors, but must be
applied in targeted areas where sufficient high-quality data
exists to ensure trustworthy results.

B The scarcity of experimental data in fusion presents
challenges for Al implementation; thus, a problem-specific
approach is recommended, focusing on well-benchmarked
aspects like transport phenomena and adaptive reactor
control.

B A symbiotic relationship between the Al and fusion sectors
could accelerate innovation in both fields—fusion provides
sustainable energy for Al's growing demands, while Al
delivers the advanced modelling and control needed to
realise commercial fusion energy.
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1. INTRODUCTION

Nuclear fusion — often heralded as always being “30 years away”

[1] - is now, finally closer than ever with groundbreaking scientific
milestones being passed on a regular basis [2, 3]. In addition to
scientific breakthroughs, the commercial fusion sector is expanding
with impressive momentum, with the sector attracting over $2.6
billion USD in 2024/2025, taking total investment in private sector
fusion companies to over $9.7 billion USD [4]. Beyond the ‘core’
fusion companies, the supply chain is also developing at pace

with companies in Europe, Asia, North America and Australia all
contributing to building a supply chain from a near-standing start [5].

Over and above merely attracting investment, many of these
fusion companies are also reporting remarkable progress on their
route towards the commercialisation of fusion [6-13], with the
overwhelming majority of fusion companies self-reporting a target
of delivering power to the grid between 2030 and 2035 [4].

However, while progress to date is impressive, it is equally clear
that there are significant scientific and engineering challenges
to overcome in the quest to commercialise fusion. While the
trajectory for many of the plethora of fusion approaches is
undoubtedly positive, it remains the case, as can be seen from
Figure 1, that only the National Ignition Facility at the Lawrence
Livermore Laboratory has reported experimental success of
attaining ignition [3, 14, 15]. Even then, ignition is only a first
hurdle to overcome. Strictly speaking ‘ignition’ (also referred to
as scientific breakeven), only compares the amount of energy put
into the fuel with the amount of energy obtained from the fusion
reaction. In order to be commercially viable, fusion needs to go
one step further and obtain more energy from the fusion reactions
than is put into the entire reactor system overall. This level of yield
is, as of yet, unattained.

Addressing these challenges will require the development and
implementation of a whole suite of new technologies, ranging
from high-temperature superconductor (HTS) magnets [16], laser
amplifiers [17] and diodes [18], and improvements in fuel cycle
systems [19]. These new technologies, coupled with the inherent
stochasticity of high-temperature, high-pressure plasma physics
[20] makes it incredibly challenging to model the performance of
fusion reactors and, consequently, improve and iterate the designs
of these reactors.

In the nuclear fission, or ‘nuclear’ sector, it is already appreciated
[21, 22] that Al will be a valuable tool for achieving systems
integration in nuclear reactors. The same is true for fusion.
However, where conventional nuclear reactors are well-understood
systems that can provide an abundance of training data for the
development of optimisation algorithms [23], and surrogate models
[24], this is not the case for nuclear’s cousin fusion.

This article therefore outlines a measured and limited approach
to implementing Al models in a manner that incrementally
improves the understanding of fusion reactor physics and
engineering to ensure that the outputs of Al models can be trusted
to improve reactor design. By producing reliable outputs, we
assert that the burgeoning fusion supply chain will benefit from
an instilled confidence in the projections put forward by the fusion
sector. This confidence is vital for facilitating the development and
growth of a global commercial fusion sector

After specifically considering the potential for the use of digital
twins [25] to enhance fusion reactor design, we briefly discuss the
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potential symbiosis between the Al industry and the fusion sector,
as well as the nuclear industry more widely, to highlight the mutual
benefit for both industries if they each support the successes of
the other.

TILG

FIGURE 1: Obtained from Wurzel & Hsu [15]. A graph depicting
the experimentally inferred Lawson parameters of fusion
experiments. To date only NIF has successfully demonstrated
ignition conditions (top right corner).

2. DIGITAL TWINS FOR FUSION

Historical approaches to computationally model physical systems
has involved running codes to solve the governing physical
equations (e.g., Maxwell’s equations of electromagnetism, Newton’s
laws of motion, laws of conservation, equations governing fluid
mechanics, and the like) to predict, numerically, the performance of
physical systems. This is, in part, because many of the equations
governing physical phenomena are only solvable numerically.
For example, the stochastic elements arising from turbulence in
fluid dynamics make it impossible to find an exact solution to the
Navier-Stokes equations in such circumstances. As these systems
become evermore complex, the costs, in terms of processing
power and time, associated with these numerical approaches also
escalates. There is, therefore, a continuing need to adopt more
efficient approaches to computational analysis and prediction.
Digital twins, and surrogate models more widely, are examples
of these more efficient computational tools, and have already been
deployed across a range of industries with great success [26].
For example, models have been proposed to integrate surrogate
modelling capabilities into the control systems of nuclear plants
to improve the automation of analysis and control [21]. Instead

of methodically and painstakingly solving governing physical
equations to precisely model the performance of a system,
digital twins are trained, using real obtained experimental data,
to emulate real systems to predict a likely outcome for a given
set of input parameters. That is, the models are trained to infer,
based on a compilation of historic experimental results, the most
likely physical outcome for a system operating with a given set
of parameters. As digital twins are trained to infer their emulated
predictions using a data-based approach, they are not constrained
by the costs associated with a thorough and detailed calculation
of the governing physical equations.

However, the successful deployment of such models requires
high-quality training to build trust between the models and their
end-users. In the vast majority of cases, this data is available as
actual real measurements of the performance of an entire system
being digitally twinned (e.g., there is a plethora of data about the
performance of nuclear reactors).

In the case of fusion, there is — as yet — only one facility
achieving ignition (although as noted above, even ignition is not
sufficient for commercialisation) [3, 14, 15], and so real data
indicative of whole-reactor performance for fusion reactors
capable of achieving ignition or higher yields is much more limited.
As such, there is significantly less whole-reactor data available
for training surrogate models and digital twins. As the old adage
goes, “Garbage In, Garbage Out” [27], so how can Al models which,
inherently, require training on high-quality data be used to support
R&D in the fusion space?

The solution, we posit, is to deploy digital twins in a specific
and limited manner, targeted towards modelling specific aspects
of a fusion reactor to answer well-defined and well-understood
problems. This approach is, in fact, already in the early stages of
adoption at the HL-3 tokamak in China, where a digital twin system
is being developed and deployed to model just the temperature
distribution within the vacuum chamber of HL-3 [28].

Over and above modelling temperature distributions, we
suggest that fusion reactor design could also benefit from the
targeted application of digital twins to the modelling of transport
phenomena in fusion plasmas. Heat transport [29-31] and particle
transport [32, 33] within fusion plasmas are already known to
be critically important processes requiring precise control to
optimise the performance of fusion reactors.

While the physics governing fluid transport is well-understood,
solving the governing equations in the presence of turbulence
generally requires a probabilistic approach. In particular transport
phenomena in fusion plasmas are subject to the stochastic impacts
of turbulence [34], and an abundant range of system-specific
plasma instabilities [35, 36]. This makes it difficult, if not impossible
to analytically determine the impact of transport effects without
the use of large-scale models such as Vlasov-Fokker-Planck codes
which have been developed and iterated upon for decades [37, 38].
These models can take several hours, even days, to numerically
calculate the distribution functions for a given plasma, and, as such,
consume significant computing resources.

However, transport phenomena are readily measurable using
experimental techniques [39-44]. This makes digital twinning an
ideal candidate for reducing the processing costs associated with
optimising solutions to transport problems. As digital twins are
simplified models that are data-driven, as opposed to physics-
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based, a digital twin is capable of solving problems much faster
than a physics-based model [45]. This is readily extensible to fusion
reactors. Provided the application of the digital twin is limited to
modelling phenomena for which sufficient amounts of high-quality
data is available, such as transport, digital twins offer an exciting
route for improving the efficiency of reactor design and optimisation.
We propose that surrogate models such as digital twins could
and should be applied in a piecewise fashion to the overarching
problem of reactor design, with each model being trained to
optimise the parameters for a specific and targeted problem for
reactor design for which experimental data is available in both
high quantity and high quality. For example, inertial confinement
fusion approaches, as schematically illustrated in Figure 2 could
implement a series of surrogate models to optimise: (i) laser
beam profiles, (ii) target geometries, (iii) transport phenomena,
(iv) target-loading configurations, and/or (v) diagnostic set-ups.
Meanwhile, magnetic confinement fusion approaches could
implement a series of surrogate models to optimise: (i) HTS
magnet arrangements, (ii) magnetic field patterns and strengths,
(i) fuel injection procedures, (iv) shielding material performance,
(v) plasma transport phenomena, and/or (vi) diagnostic set-ups,
as is depicted similarly in Figure 3. As the reader will no doubt
appreciate, these lists are not exhaustive but rather exemplary
of the broad potential applicability of surrogate models to fusion
reactor design and optimisation. What is important is that models
are applied in a deliberately targeted fashion, with a piecewise
layering of models — each of which can be independently

FIGURE 2: Schematic illustrating the potential applicability of
discrete surrogate models/digital twins (peripheral objects)
to the development of an inertial fusion energy reactor.
Digital twins could be suitably and separately applied to one
or more of (clockwise from top): (i) laser beam profiles, (ii)
target geometries, (iii) diagnostic set-ups and measurements
phenomena, (iv) target-loading configurations, and/or (v)
transport phenomena.

validated with real experimental data, to build trust in the overall
optimisation procedures. Moreover, above and beyond the
application of surrogate models to reactor design, it may also
be feasible and even desirable to apply these piecewise models
to sensitivity analysis [46] to build an understanding of which
parameters are most impactful on reactor performance.

FIGURE 3: Schematic illustrating the potential applicability of
discrete surrogate models/digital twins (peripheral objects) to
the development of a magnetic fusion energy reactor. Digital
twins could be suitably and separately applied to one or more
of (clockwise from top): (i) HTS magnet arrangements, (ii)
magnetic field patterns and strengths, (iii) diagnostic set-ups
and measurements, (iv) shielding material performance, (v)
fuel injection procedures, and/or (vi) transport phenomena.

3. FURTHER OPPORTUNITIES FOR THE APPLICATION
OF Al

Beyond surrogate models, Al has the potential to shape other
elements of reactor design and control in the fusion sector.
Al-controllers for adaptively controlling actuators based on
prediction from deep reinforcement (DRL) models have already
been demonstrated on the DIII-D National Fusion Facility [47].
There, researchers demonstrated that their DRL models are able
to adaptively respond to detected fluctuations within a few tens
of milliseconds, thereby limiting the development of parasitic
instabilities that could disrupt the confinement of the plasma. Such
rapid, adaptive, control of operational parameters is far superior to
anything achievable by manual control by a human operator.

Meanwhile, in inertial fusion research, generative Al is being
used to optimize target design [48], a critical problem that must
be solved to successfully commercialise laser-driven fusion. More
broadly, the use of Al has been flagged by the Clean Air Task Force
as being a critically important tool for building a fusion materials
database to assist with materials selection [49].

Fusion would also stand to take inspiration from its more
experienced cousin, the traditional nuclear industry. From robotics
software [50] to wider systems control [21], from data analysis [51]
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to reporting that complies with regulatory requirements [52], the
nuclear industry has already begun to see the successful adoption
of Al to improve systems and processes across the organisational
workflow. Fusion should take heed of this experience and adapt it
to their needs.

4. MUTUAL BENEFIT

It's not just fusion that stands to benefit from Al, Al also stands to
benefit from the nuclear and fusion revolutions.

When the development of a commercial fusion reactor is
successful, Big Data will be offered the prospect of harnessing
an inexhaustible source of clean energy. With the ever-booming
growth of Al, there is already a huge demand for sustainable energy
source to power Al-data centres [53]. Indeed, it is commonly and
publicly highlighted by leaders in the Al industry that an energy
breakthrough is necessary to support the growth of Al [54].

Large data centres will be vital to support the widespread use
of Al and cloud-based computing applications. According to
the International Energy Agency, overall capital investment by
Amazon, Google, and Microsoft in new data centres contributed to
0.5% of US GDP in 2023 [55]. The power demand for data centres
in the US alone is projected to increase to up to 12% of the total
US electricity consumption by 2030 [56]. With many countries
announcing pledges to achieve net zero emissions within the next
few decades, there is a desire to meet these demands without the
use of fossil fuels. Enter both fission and fusion.

Beyond being an energy supply, the high-performance
computing requirements associated with achieving fusion also
provide a bedrock for building a skilled Al workforce to deliver
the next-generation developments in Al and high-performance
computing more generally [57]. No doubt, it is this combination
of benefits that has driven, and will likely continue to drive, the
biggest tech companies in the world to invest significantly in the
success of fusion companies, as recently evidenced by Google’s
recent power purchase agreement with US fusion company
Commonwealth Fusion Systems [58], and OpenAl CEO Altman’s
multi-million investment in Helion Energy [59].

It is clear the Al industry seeks to benefit from the advancement
of nuclear fusion, and that nuclear fusion stands to flourish by
exploiting the capabilities of new and developing Al algorithms.
Recognition of the synergies between these two industries is
extending beyond the private sector, as governments also begin
to see the potential symbiotic benefits. For example, the UK
government announced earlier this year that it will deliver the first Al
Growth Zone at the headquarters of the UK Atomic Energy Authority
[60]. This public sector initiative aims not only to invest in Al
infrastructure in the UK but also to advance fusion energy research,
a clear demonstration of the strategic convergence of Al and fusion.

With a clear trajectory across academia, the public sector, and
the private sector of a growing closeness between the fusion
and Al sectors, it is clear that the futures and interests of both
industries are set to become ever more closely aligned.

5. CONCLUSIONS OR CONCLUDING REMARKS

Many of the physics and engineering challenges impeding

the successful commercialisation of fusion energy stand to
benefit from the judicious application of Al models to make the
optimisation of reactor design and control more accurate, reliable

and efficient. However, as discussed above, it is important to
note that a model is only as good as the data used to train it and,
given the relative scarcity of fusion reactor data when compared
with more established physical systems (such as conventional
nuclear systems), any approaches to implementing Al solutions
in the fusion sector require careful adaptation so that each model
deployed is applied only to situations against which the model’s
veracity can be fully tested and benchmarked. This leads to the
conclusion that models such as surrogate models and digital twins
can still be implemented to assist fusion R&D, but must be deployed
in a piecewise fashion to iteratively construct an overall reactor
model, instead of adopting the more conventional approach of
training a digital twin to treat an entire reactor system holistically.
Through the careful and targeted application of Al to fusion
engineering, the progress of commercialisation could be
significantly accelerated, thereby bringing the ambition of a
commercial fusion reactor closer to fruition. Conversely, as a
potentially significant source of carbon-free energy and a breeding
ground for an engaged high-skill workforce, it is in the interest
of Big Tech companies to support the development of fusion
so that this emerging industry can contribute to the continued
development of the new Al data centre paradigm.
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