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1. INTRODUCTION
Nuclear fusion – often heralded as always being “30 years away” 
[1] – is now, finally closer than ever with groundbreaking scientific 
milestones being passed on a regular basis [2, 3]. In addition to 
scientific breakthroughs, the commercial fusion sector is expanding 
with impressive momentum, with the sector attracting over $2.6 
billion USD in 2024/2025, taking total investment in private sector 
fusion companies to over $9.7 billion USD [4]. Beyond the ‘core’ 
fusion companies, the supply chain is also developing at pace 
with companies in Europe, Asia, North America and Australia all 
contributing to building a supply chain from a near-standing start [5].

Over and above merely attracting investment, many of these 
fusion companies are also reporting remarkable progress on their 
route towards the commercialisation of fusion [6-13], with the 
overwhelming majority of fusion companies self-reporting a target 
of delivering power to the grid between 2030 and 2035 [4].

However, while progress to date is impressive, it is equally clear 
that there are significant scientific and engineering challenges 
to overcome in the quest to commercialise fusion. While the 
trajectory for many of the plethora of fusion approaches is 
undoubtedly positive, it remains the case, as can be seen from 
Figure 1, that only the National Ignition Facility at the Lawrence 
Livermore Laboratory has reported experimental success of 
attaining ignition [3, 14, 15]. Even then, ignition is only a first 
hurdle to overcome. Strictly speaking ‘ignition’ (also referred to 
as scientific breakeven), only compares the amount of energy put 
into the fuel with the amount of energy obtained from the fusion 
reaction. In order to be commercially viable, fusion needs to go 
one step further and obtain more energy from the fusion reactions 
than is put into the entire reactor system overall. This level of yield 
is, as of yet, unattained.

Addressing these challenges will require the development and 
implementation of a whole suite of new technologies, ranging 
from high-temperature superconductor (HTS) magnets [16], laser 
amplifiers [17] and diodes [18], and improvements in fuel cycle 
systems [19]. These new technologies, coupled with the inherent 
stochasticity of high-temperature, high-pressure plasma physics 
[20] makes it incredibly challenging to model the performance of 
fusion reactors and, consequently, improve and iterate the designs 
of these reactors.

In the nuclear fission, or ‘nuclear’ sector, it is already appreciated 
[21, 22] that AI will be a valuable tool for achieving systems 
integration in nuclear reactors. The same is true for fusion. 
However, where conventional nuclear reactors are well-understood 
systems that can provide an abundance of training data for the 
development of optimisation algorithms [23], and surrogate models 
[24], this is not the case for nuclear’s cousin fusion.

This article therefore outlines a measured and limited approach 
to implementing AI models in a manner that incrementally 
improves the understanding of fusion reactor physics and 
engineering to ensure that the outputs of AI models can be trusted 
to improve reactor design. By producing reliable outputs, we 
assert that the burgeoning fusion supply chain will benefit from 
an instilled confidence in the projections put forward by the fusion 
sector. This confidence is vital for facilitating the development and 
growth of a global commercial fusion sector

After specifically considering the potential for the use of digital 
twins [25] to enhance fusion reactor design, we briefly discuss the 
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of methodically and painstakingly solving governing physical 
equations to precisely model the performance of a system, 
digital twins are trained, using real obtained experimental data, 
to emulate real systems to predict a likely outcome for a given 
set of input parameters. That is, the models are trained to infer, 
based on a compilation of historic experimental results, the most 
likely physical outcome for a system operating with a given set 
of parameters. As digital twins are trained to infer their emulated 
predictions using a data-based approach, they are not constrained 
by the costs associated with a thorough and detailed calculation 
of the governing physical equations.

However, the successful deployment of such models requires 
high-quality training to build trust between the models and their 
end-users. In the vast majority of cases, this data is available as 
actual real measurements of the performance of an entire system 
being digitally twinned (e.g., there is a plethora of data about the 
performance of nuclear reactors).

In the case of fusion, there is – as yet – only one facility 
achieving ignition (although as noted above, even ignition is not 
sufficient for commercialisation) [3, 14, 15], and so real data 
indicative of whole-reactor performance for fusion reactors 
capable of achieving ignition or higher yields is much more limited. 
As such, there is significantly less whole-reactor data available 
for training surrogate models and digital twins. As the old adage 
goes, “Garbage In, Garbage Out” [27], so how can AI models which, 
inherently, require training on high-quality data be used to support 
R&D in the fusion space?

The solution, we posit, is to deploy digital twins in a specific 
and limited manner, targeted towards modelling specific aspects 
of a fusion reactor to answer well-defined and well-understood 
problems. This approach is, in fact, already in the early stages of 
adoption at the HL-3 tokamak in China, where a digital twin system 
is being developed and deployed to model just the temperature 
distribution within the vacuum chamber of HL-3 [28].

Over and above modelling temperature distributions, we 
suggest that fusion reactor design could also benefit from the 
targeted application of digital twins to the modelling of transport 
phenomena in fusion plasmas. Heat transport [29-31] and particle 
transport [32, 33] within fusion plasmas are already known to 
be critically important processes requiring precise control to 
optimise the performance of fusion reactors.

While the physics governing fluid transport is well-understood, 
solving the governing equations in the presence of turbulence 
generally requires a probabilistic approach. In particular transport 
phenomena in fusion plasmas are subject to the stochastic impacts 
of turbulence [34], and an abundant range of system-specific 
plasma instabilities [35, 36]. This makes it difficult, if not impossible 
to analytically determine the impact of transport effects without 
the use of large-scale models such as Vlasov-Fokker-Planck codes 
which have been developed and iterated upon for decades [37, 38]. 
These models can take several hours, even days, to numerically 
calculate the distribution functions for a given plasma, and, as such, 
consume significant computing resources.

However, transport phenomena are readily measurable using 
experimental techniques [39-44]. This makes digital twinning an 
ideal candidate for reducing the processing costs associated with 
optimising solutions to transport problems. As digital twins are 
simplified models that are data-driven, as opposed to physics-

potential symbiosis between the AI industry and the fusion sector, 
as well as the nuclear industry more widely, to highlight the mutual 
benefit for both industries if they each support the successes of 
the other.

FIGURE 1: Obtained from Wurzel & Hsu [15]. A graph depicting 
the experimentally inferred Lawson parameters of fusion 
experiments. To date only NIF has successfully demonstrated 
ignition conditions (top right corner).

2. DIGITAL TWINS FOR FUSION
Historical approaches to computationally model physical systems 
has involved running codes to solve the governing physical 
equations (e.g., Maxwell’s equations of electromagnetism, Newton’s 
laws of motion, laws of conservation, equations governing fluid 
mechanics, and the like) to predict, numerically, the performance of 
physical systems. This is, in part, because many of the equations 
governing physical phenomena are only solvable numerically. 
For example, the stochastic elements arising from turbulence in 
fluid dynamics make it impossible to find an exact solution to the 
Navier-Stokes equations in such circumstances. As these systems 
become evermore complex, the costs, in terms of processing 
power and time, associated with these numerical approaches also 
escalates. There is, therefore, a continuing need to adopt more 
efficient approaches to computational analysis and prediction.

Digital twins, and surrogate models more widely, are examples 
of these more efficient computational tools, and have already been 
deployed across a range of industries with great success [26]. 
For example, models have been proposed to integrate surrogate 
modelling capabilities into the control systems of nuclear plants 
to improve the automation of analysis and control [21]. Instead 
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based, a digital twin is capable of solving problems much faster 
than a physics-based model [45]. This is readily extensible to fusion 
reactors. Provided the application of the digital twin is limited to 
modelling phenomena for which sufficient amounts of high-quality 
data is available, such as transport, digital twins offer an exciting 
route for improving the efficiency of reactor design and optimisation.

We propose that surrogate models such as digital twins could 
and should be applied in a piecewise fashion to the overarching 
problem of reactor design, with each model being trained to 
optimise the parameters for a specific and targeted problem for 
reactor design for which experimental data is available in both 
high quantity and high quality. For example, inertial confinement 
fusion approaches, as schematically illustrated in Figure 2 could 
implement a series of surrogate models to optimise: (i) laser 
beam profiles, (ii) target geometries, (iii) transport phenomena, 
(iv) target-loading configurations, and/or (v) diagnostic set-ups. 
Meanwhile, magnetic confinement fusion approaches could 
implement a series of surrogate models to optimise: (i) HTS 
magnet arrangements, (ii) magnetic field patterns and strengths, 
(iii) fuel injection procedures, (iv) shielding material performance, 
(v) plasma transport phenomena, and/or (vi) diagnostic set-ups, 
as is depicted similarly in Figure 3. As the reader will no doubt 
appreciate, these lists are not exhaustive but rather exemplary 
of the broad potential applicability of surrogate models to fusion 
reactor design and optimisation. What is important is that models 
are applied in a deliberately targeted fashion, with a piecewise 
layering of models – each of which can be independently 

validated with real experimental data, to build trust in the overall 
optimisation procedures. Moreover, above and beyond the 
application of surrogate models to reactor design, it may also 
be feasible and even desirable to apply these piecewise models 
to sensitivity analysis [46] to build an understanding of which 
parameters are most impactful on reactor performance.

FIGURE 2: Schematic illustrating the potential applicability of 
discrete surrogate models/digital twins (peripheral objects) 
to the development of an inertial fusion energy reactor. 
Digital twins could be suitably and separately applied to one 
or more of (clockwise from top): (i) laser beam profiles, (ii) 
target geometries, (iii) diagnostic set-ups and measurements 
phenomena, (iv) target-loading configurations, and/or (v) 
transport phenomena.

FIGURE 3: Schematic illustrating the potential applicability of 
discrete surrogate models/digital twins (peripheral objects) to 
the development of a magnetic fusion energy reactor. Digital 
twins could be suitably and separately applied to one or more 
of (clockwise from top): (i) HTS magnet arrangements, (ii) 
magnetic field patterns and strengths, (iii) diagnostic set-ups 
and measurements, (iv) shielding material performance, (v) 
fuel injection procedures, and/or (vi) transport phenomena.

3. FURTHER OPPORTUNITIES FOR THE APPLICATION
OF AI

Beyond surrogate models, AI has the potential to shape other 
elements of reactor design and control in the fusion sector. 
AI-controllers for adaptively controlling actuators based on 
prediction from deep reinforcement (DRL) models have already 
been demonstrated on the DIII-D National Fusion Facility [47]. 
There, researchers demonstrated that their DRL models are able 
to adaptively respond to detected fluctuations within a few tens 
of milliseconds, thereby limiting the development of parasitic 
instabilities that could disrupt the confinement of the plasma. Such 
rapid, adaptive, control of operational parameters is far superior to 
anything achievable by manual control by a human operator.

Meanwhile, in inertial fusion research, generative AI is being 
used to optimize target design [48], a critical problem that must 
be solved to successfully commercialise laser-driven fusion. More 
broadly, the use of AI has been flagged by the Clean Air Task Force 
as being a critically important tool for building a fusion materials 
database to assist with materials selection [49].

Fusion would also stand to take inspiration from its more 
experienced cousin, the traditional nuclear industry. From robotics 
software [50] to wider systems control [21], from data analysis [51] 
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to reporting that complies with regulatory requirements [52], the 
nuclear industry has already begun to see the successful adoption 
of AI to improve systems and processes across the organisational 
workflow. Fusion should take heed of this experience and adapt it 
to their needs.

4. MUTUAL BENEFIT
It’s not just fusion that stands to benefit from AI, AI also stands to 
benefit from the nuclear and fusion revolutions.

When the development of a commercial fusion reactor is 
successful, Big Data will be offered the prospect of harnessing 
an inexhaustible source of clean energy. With the ever-booming 
growth of AI, there is already a huge demand for sustainable energy 
source to power AI-data centres [53]. Indeed, it is commonly and 
publicly highlighted by leaders in the AI industry that an energy 
breakthrough is necessary to support the growth of AI [54].

Large data centres will be vital to support the widespread use 
of AI and cloud-based computing applications. According to 
the International Energy Agency, overall capital investment by 
Amazon, Google, and Microsoft in new data centres contributed to 
0.5% of US GDP in 2023 [55]. The power demand for data centres 
in the US alone is projected to increase to up to 12% of the total 
US electricity consumption by 2030 [56]. With many countries 
announcing pledges to achieve net zero emissions within the next 
few decades, there is a desire to meet these demands without the 
use of fossil fuels. Enter both fission and fusion.

Beyond being an energy supply, the high-performance 
computing requirements associated with achieving fusion also 
provide a bedrock for building a skilled AI workforce to deliver 
the next-generation developments in AI and high-performance 
computing more generally [57]. No doubt, it is this combination 
of benefits that has driven, and will likely continue to drive, the 
biggest tech companies in the world to invest significantly in the 
success of fusion companies, as recently evidenced by Google’s 
recent power purchase agreement with US fusion company 
Commonwealth Fusion Systems [58], and OpenAI CEO Altman’s 
multi-million investment in Helion Energy [59].

It is clear the AI industry seeks to benefit from the advancement 
of nuclear fusion, and that nuclear fusion stands to flourish by 
exploiting the capabilities of new and developing AI algorithms. 
Recognition of the synergies between these two industries is 
extending beyond the private sector, as governments also begin 
to see the potential symbiotic benefits. For example, the UK 
government announced earlier this year that it will deliver the first AI 
Growth Zone at the headquarters of the UK Atomic Energy Authority 
[60]. This public sector initiative aims not only to invest in AI 
infrastructure in the UK but also to advance fusion energy research, 
a clear demonstration of the strategic convergence of AI and fusion.

With a clear trajectory across academia, the public sector, and 
the private sector of a growing closeness between the fusion 
and AI sectors, it is clear that the futures and interests of both 
industries are set to become ever more closely aligned.

5. CONCLUSIONS OR CONCLUDING REMARKS 
Many of the physics and engineering challenges impeding 
the successful commercialisation of fusion energy stand to 
benefit from the judicious application of AI models to make the 
optimisation of reactor design and control more accurate, reliable 

and efficient. However, as discussed above, it is important to 
note that a model is only as good as the data used to train it and, 
given the relative scarcity of fusion reactor data when compared 
with more established physical systems (such as conventional 
nuclear systems), any approaches to implementing AI solutions 
in the fusion sector require careful adaptation so that each model 
deployed is applied only to situations against which the model’s 
veracity can be fully tested and benchmarked. This leads to the 
conclusion that models such as surrogate models and digital twins 
can still be implemented to assist fusion R&D, but must be deployed 
in a piecewise fashion to iteratively construct an overall reactor 
model, instead of adopting the more conventional approach of 
training a digital twin to treat an entire reactor system holistically.

Through the careful and targeted application of AI to fusion 
engineering, the progress of commercialisation could be 
significantly accelerated, thereby bringing the ambition of a 
commercial fusion reactor closer to fruition. Conversely, as a 
potentially significant source of carbon-free energy and a breeding 
ground for an engaged high-skill workforce, it is in the interest 
of Big Tech companies to support the development of fusion 
so that this emerging industry can contribute to the continued 
development of the new AI data centre paradigm.
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